Energy Sources

Fossil Fuels

- Most common way of producing electricity
 - Coal 38%
 - Natural Gas 23%
 - Oil 3%
- The fuel is burned, and the thermal energy is used to power steam engines which drive the generators

Data source: https://www.iea.org/weo2019/fuels/ (2018)

Advantages · Relatively cheap

- · High energy density
- · Variety of engines and devices use them directly and easily
- Extensive distribution network is in place

- Will run out
 - $-\sim$ 70 years for conventional oil and 250 350 years of coal
- Pollute the environment
 - The pollution comes from incomplete burning and from impurities in the fuel
 - Technology has greatly decreased the amount of harmful emissions from burning fossil fuels

- Emit greenhouse gases
 - That's what happens when you burn something
 - Human contributions to the amount of greenhouse gasses in the atmosphere is a very small proportion of natural contributions

Hydroelectric Power

- Oldest and most established source of electrical power
- Power is generated from water falling over (or through) a turbine connected to a generator
- 16% of the world's electricity is hydroelectric

- A pumped storage system takes the water that flows through the turbine and pumps it back up to its original height
- This takes power and lowers the overall efficiency of the power plant
- This technique is used to store power until it is needed

 Power produced is a result of a mass of water, m, falling from a height, h, during a period of time Δt

$$P = \frac{mgh}{\Delta t}$$

But the volume of water is more important. So...

$$\rho = \frac{m}{V} \quad or \quad m = \rho V$$

$$P = \frac{\rho V g h}{\Delta t}$$

 $\frac{V}{\Delta t}$ is referred to as the volume flow rate, Q

$$P = \rho Qgh$$

Note: This assumes 100% efficiency

Advantages - Ignoring the cost of construction, equipment, and maintenance Inexhaustible - Ignoring what happens during construction and the flooding that occurs Disadvantages · Very dependent on location • Requires drastic changes to the environment - Not necessarily a bad thing · Initial costs high - This is not unique to hydroelectric dams **Nuclear Power** • Nuclear fission produces thermal energy which is used to produce steam to drive generators • 10% of electricity world wide is produced

• "Free"

Clean

by nuclear power

Advantages

- High power output
- Large reserves of nuclear fuels
- No greenhouse gasses produced

Disadvantages

- Radioactive waste products are difficult to dispose of
 - There is actually very little waste and governments have refused to pay for research into the long term storage and disposal of waste

 Major public health hazard should something go wrong Longstanding myth There have only been three major nuclear accidents (Three Mile Island, Chernobyl, Fukushima) and the resulting "damage" was completely contained; there was no wide spread environmental or human issues Problems associated with uranium mining No more than any other mining operation 	
Possibility of producing materials for nuclear weapons This is a real concern if the reactor uses enriched uranium This problem would be eliminated by using Thorium as a fuel	
 Wind Power Windmills directly turn a generator 5% of the world's electricity is generated by wind The windmills used to produce a few 	
 The windmins used to produce a few megawatts of electricity are huge (vanes are larger than 30 m) Serious power production from wind requires constant wind speed of 6-14 ms⁻¹ 	

- A mass of air, m, passes through an area, A, with a velocity, v, in time Δt
- The density of the air is ρ
- In Δt, the wind travels a distance vΔt, giving a volume of AvΔt
- The mass of air is thus ρAvΔt
- Calculating the kinetic energy of this air gives

$$\frac{1}{2}mv^2 = \frac{1}{2}(\rho Av\Delta t)v^2 = \frac{1}{2}\rho A\Delta tv^3$$

• The power generated by the wind turbine is therefore

$$P = \frac{1}{2} \rho A v^3$$

Note: This assumes that 100% of the wind's kinetic energy is converted to power.

(Only about 35-45% of the wind is actually captured by the windmill.)

Advantages • "Free" - Ignoring equipment and other costs Inexhaustible Clean - Ignoring manufacturing Disadvantages · Works only if there is wind - And only if the wind's velocity is in a specific range Aesthetically unpleasant Noise problems - The turbines produce a constant low frequency hum when they are in operation • The initial and maintenance costs are high - D361 Wind Turbine (1kW peak power): \$11,000 USD (plus batteries, wiring, installation) An average home uses ~1000 kWh/month with a daily peak or ~700W Kill bats and birds - US wind turbines kill 75 000 − 275 000 birds

per year (some of these are protected species

like bald eagles)

Solar Power

- Solar Heating Panel
 - Sunlight heats water (or air) for heating a house
 - Normally used to heat water in a hot water tank

- (A)- passive system (B)- active system with solar power pump

- Photovoltaic Cells
 - Developed in 1954 at Bell Laboratories
 - Used extensively in the space program to power satellites
 - Sunlight incident on the panels releases electrons and establishes a potential difference across the cell
 - Efficiency ~30%
 - -2% of electricity is generated by solar power worldwide

Solarkraftwerk Waldpolenz, the first Solar 40-MW CdTe PV Array installed by JUWI Group in Brandis, Germany (Photo courtesy of JUWI Group)

Advantages

- "Free"
 - If we ignore the cost of all of the equipment
- Inexhaustible
 - Except when its night (or cloudy)
- Clean
 - Ignoring the manufacturing process and batteries that are necessary for storing power

Disadvantages

- The sun is not always shining
 - Does not work when it is cloudy or night
- Low power output
 - -~30 V, ~7 A
 - Output is DC which must be converted to AC with an inverter

•	Initial	startup	costs	hig	h

- 2.58 kW Roof Mount On/Off Grid Kit Home
 - Model: SFGT2.5XWAGM
 - 2.58 kW solar array with roof / ground mount; 4.5 kW grid tie inverter; 60A charge controller; distribution panel; auto generator start; System control panel; inverter system comes preassembled and wired; 390 Ah (48VDC) 6V AGM maintenance free battery bank with cables and hardware; Shipping to nearest shipping depot
- -\$24,199.00 CAD

solartrader.ca

· Requires large area

- The example system Solar Trader has 12 panels 59.1" x 39" for a total area of 192 sq ft (17.8 m²)
- · Maintenance costs are high
 - The battery bank in the example system lasts 8 years and then must be replaced at a cost of \$5600

Solar Thermal

 Mirrors focus sunlight onto boilers generating steam which drives a generator

www.energy.ca.gov/siting/meetings/2010-01-22_meeting/presentations/BrightSource_Energy-Ivanpah_Project_Overview_2010-01-22.pd

Aerial photograph of Ivanpah Solar Power Facility (Craig Butz)

Ivanpah Solar Power Facility generating power on April 29, 2013 (Aioannides)